BAYESIAN INFERENCE METHODS FOR UNIVARIATE AND MULTIVARIATE GARCH MODELS: A SURVEY

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference Methods for Univariate and Multivariate GARCH Models: a Survey

This survey reviews the existing literature on the most relevant Bayesian inference methods for univariate and multivariate GARCH models. The advantages and drawbacks of each procedure are outlined as well as the advantages of the Bayesian approach versus classical procedures. The paper makes emphasis on recent Bayesian non-parametric approaches for GARCH models that avoid imposing arbitrary pa...

متن کامل

Multivariate GARCH with Only Univariate Estimation

This brief note offers an explicit algorithm for a multivariate GARCH model, called PC-GARCH, that requires only univariate GARCH estimation. It is suitable for problems with hundreds or even thousands of variables. PC-GARCH is compared to two other techniques of getting multivariate GARCH using univariate estimates.

متن کامل

Bayesian inference with an adaptive proposal density for GARCH models

We perform the Bayesian inference of a GARCH model by the Metropolis-Hastings algorithm with an adaptive proposal density. The adaptive proposal density is assumed to be the Student’s t-distribution and the distribution parameters are evaluated by using the data sampled during the simulation. We apply the method for the QGARCH model which is one of asymmetric GARCH models and make empirical stu...

متن کامل

Core Discussion Paper 2003/31 Multivariate Garch Models: a Survey

This paper surveys the most important developments in multivariate ARCH-type modelling. It reviews the model specifications, the inference methods, and identifies likely directions of future research.

متن کامل

Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown

Exponential models of Autoregressive Conditional Heteroscedasticity (ARCH) are of special interest, since they enable richer dynamics (e.g. contrarian or cyclical), provide greater robustness to jumps and outliers, and guarantee the positivity of volatility. The latter is not guaranteed in ordinary ARCH models, in particular when additional exogenous and/or predetermined variables (“X”) are inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Economic Surveys

سال: 2013

ISSN: 0950-0804

DOI: 10.1111/joes.12046